
ACLMPL: Portable and E�cient Message Passing for

MPPs

James Painter, Patrick McCormick�,

Michael Krogh, Charles Hansen Guillaume Colin de Verdi�erey

Advanced Computing Laboratory Centre d'Etudes de Limeil-Valenton

Los Alamos National Laboratory CEL-V/DMA/AIM

Los Alamos, New Mexico 87545 94195 Villeneuve-Saint-Georges, France

September 19, 1995

Abstract

This paper presents the Advanced Computing Lab Message Passing Library (ACLMPL). Modeled

after Thinking Machines Corporation's CMMD, ACLMPL is a high throughput, low latency com-

munications library for building message passing applications. The library has been implemented on

the Cray T3D, Thinking Machines CM-5, SGI workstations, and on top of PVM. On the Cray T3D,

benchmarks show ACLMPL to be 4 to 7 times faster than MPI or PVM.

1 Introduction

Parallel programs are typically written in one of two styles: SIMD or MIMD. SIMD (Single Instruction,

Multiple Data) programs are typically written in a data parallel language, such as Fortran 901. With such

programs interprocessor communication is hidden from the programmer via the compiler and runtime

system.

With MIMD (Multiple Instruction, Multiple Data) programs the developer typically calls message passing

primitives to perform interprocess communications. For such programs to run e�ciently and gain the best

possible speedup, the communications cost of the program must be as small as possible. By small, we

�Author additionally with the Computer Science Department at The University of New Mexico
yAuthor currently at the ACL through a grant from DGA/DRET
1SPMD (Single Program, Multiple Data) can be thought of as a more general form of SIMD.

1



mean lowest latency and highest throughput. If communications costs are high, then the program will be

severely limited in terms of its speedup potential as the number of processors increases.

The development of the ACL Message Passing Library (ACLMPL) was driven by two motivations: per-

formance and portability.

As already mentioned, performance of a communications library is crucial to overall program performance.

This fact was made all too clear when we started porting our message passing programs from the Thinking

Machines Corporation (TMC) CM-5 massively parallel computer to the Cray Research Inc. (CRI) T3D.

CRI supplies an implementation of the Parallel Virtual Machine (PVM) message passing library for the

T3D; however, in our experience, its performance is poor. We found that our codes not only performed

poorly but that they did not scale up (or run in some cases) to large numbers of processors. This was

entirely due to the implementation of PVM on the T3D.

Our second motivation, portability, was driven by our investment in CM-5 software development. Many

of the libraries and programs that we have developed for the CM-5 use a message passing library called

CMMD. Upon the arrival of our T3D, we wanted an easy migration path for our software. Additionally, the

CM-5 will still be a major production machine for some time to come. Thus having a common messaging

system would be an added bonus.

The remaining sections describe previous message passing systems, describe the implementation of ACLMPL,

present timings, describe a few applications that use ACLMPL, and draw conclusions.

2 Previous Work

The PVM library was designed to treat a collection of computers, which may be workstations, servers,

vector computers, or even MPPs, as a single distributed parallel computer [4]. To accomplish this, PVM

supports heterogeneous processors, networks and data types. Besides basic communication primitives

(asynchronous send and receive), PVM has primitives for process control, synchronization, signaling,

process groups, and virtual machine control.

The Message Passing Interface (MPI) library was designed with e�ciency and portability in mind. The

MPI feature set was designed by a committee which used features and concepts from many various message

passing systems [5]. What resulted is a \full-featured" message passing library that includes many varia-

tions on send and receive (blocking/nonblocking, bu�ered/unbu�ered, receiver-ready, di�erent data types

including user speci�ed, and more). Additionally, MPI includes support for global operations (barriers,

reductions, gather/scatters, broadcasts, scans, etc.), processor topologies, processor groups, pro�ling, and

error handling. Process management (creation, deletion, migration), active messages, and I/O support are

not included in the current standard but are expected to be in the MPI-2 standard.

The Illinois Fast Messaging library (FM) has the goal of providing a fast message passing interface [7]. The

authors of FM tailor the internals of the library to the particular architecture that it is being used on. FM

2



provides a standard interface and high performance; however, it forces the user into using active messages

instead of synchronous or asynchronous communications primitives. Also, FM does not provide global

operations. Additionally, it has a fairly small message size constraint and in its current implementation it

has compatibility problems with PVM, MPI, and shared memory operations on the T3D.

TMC created CMMD for the CM-5 massively parallel computer [3]. CMMD supports three styles of

communication: synchronous, asynchronous, and active messages (used for event driven applications).

The library also includes functions for global operations (reductions, scans, broadcasts, barriers) and

parallel I/O. CMMD has no support for process control or virtual machine control.

Many other message passing systems provide similar functionality to these three. PVM, MPI, and CMMD

are of particular interest to us since they are the \supported" message passing systems for the T3D and

the CM-5.

3 The Need for Performance

Our software e�orts are targeted towards high performance software for MPPs and SMPs (Symmetric

Multi-Processors). Our focus is not on harnessing the latent power of desktop workstations. Nor is it in

running a single program on several supercomputers. Given this, several key di�erences should be noted

between PVM, MPI, and CMMD.

PVM is widely available for most Unix workstations and for many common supercomputers and MPPs.

Portability, through support of heterogeneous data types and computers, is a main goal. PVM's main

weakness is that it is not high performance. One example of this is that past versions utilize a daemon

process on each computer node which was involved in communications. Recent versions of PVM allow

these daemons to be optionally by-passed; however, performance is still lacking as will be shown.

MPI is a recent message passing system and is not widely available at this time. MPI includes numerous

primitives (far more than PVM), except for process management. While e�ciency is a main goal for MPI,

our benchmarks on the T3D show that it is lacking as well. MPI, like PVM, has the goal of supporting

heterogeneous data types and computers.

CMMD di�ers from PVM and MPI in that it is not available on anything other than the CM-5; however,

it is does have a large user base since it was the only supported message passing system available on the

CM-5 until recently (PVM was recently ported to the CM-5 by TMC). CMMD has a small set of primitives

which are e�cient, simple, but complete. It has the basic communications primitives, active messages and

the most commonly used global operations.

CMMD was designed for interprocessor communications within the CM-5 and not with processes external

to the MPP. This allows for several optimizations. Since the library is not designed to communicate with

heterogeneous processors or data types, it avoids unnecessary data conversion and a plethora of di�erent

primitives for various data types. CMMD also takes advantage of the underlying hardware support. For

3



example, it utilizes both the data network and the control network in the CM-5. In particular, the control

network is used in global communications operations such as reductions and broadcasts.

ACLMPL was developed with similar constraints and goals as CMMD: message passing within a single

multiprocessor machine (MPPs and SMPs), e�cient global operations, and su�cient primitives without

trying to be all encompassing. As will be shown, this results in a message passing system, for both

synchronous and asynchronous communications primitives, that is faster than PVM and MPI.

4 Implementation

ACLMPL is split into two groups: the synchronous communications primitives and the asynchronous

primitives. On top of the synchronous primitives are layered the global communications primitives. Split-

ting synchronous and asynchronous primitives into two separate groups, with no overlap, allows for greater

optimization than would be possible otherwise. For example, layering synchronous on top of asynchronous,

is possible but it introduces additional overhead (extra function calls, bu�ering, etc.). Additionally, the

timings will show that synchronous communication can be faster than asynchronous communications.

The following sections will describe the implementation of ACLMPL on the T3D. Later sections will brie
y

discuss the CM-5 and SGI implementations.

4.1 T3D Synchronous Communications

The synchronous message passing API in ACLMPL was implemented �rst. Synchronous message passing

has some potential performance advantages over asynchronous methods since there is no need for inter-

mediate bu�ering. Data can be sent directly from the sender to the receiver with no need for additional

data copying. This can result in much higher bandwidth and lower latency than is possible with an

asynchronous protocol. The tradeo� is that computation cannot be overlapped with communications2.

A simple protocol built on the CRI SHMEM library shmem put() function, which is faster than shmem get(),

is used as the lowest level communications primitive on the T3D [1]. Figure 1 shows the protocol used

to send data between two processes on two separate Processing Elements (PEs). The receiving PE �rst

writes a request block to the sending PE which contains the receive bu�er address, its bu�er length, and

a control 
ag. The request block totals 16 bytes. Each PE has an array of request blocks, indexed by

receiving PE. This avoids the need for locks on the request blocks since each block has only one writer.

The sending PE blocks, via a spin-wait loop checking the control 
ag, until this request block arrives.

Once the request block is received by the sender, the sender initiates a shmem put() from the local send

bu�er address to the receiver's bu�er address which is taken from the receive request block. Finally, after

the data is transferred, a completion block is transmitted back to the receiver, indicating the size of the

2Except through the use of a thread package which allows multiple threads of execution on each PE.

4



Figure 1: Synchronous Protocol

transfer, in bytes, and a 
ag value (DONE) indicating the transfer has completed. This completion block

consists of 8 bytes.

The receiver, after initiating the request, waits in a spin-wait loop for its 
ag to change to DONE. Once

the 
ag changes to DONE, both sender and receiver return. The synchronous protocol requires one round

trip between the sending and receiving PEs and a total of 24 bytes of overhead information. This results in

very low end-to-end latency (4.5 microseconds for a one word message transmitted between direct neighbor

PEs) and high bandwidth (greater than 100MB/sec for one-to-all and all-to-one communication patterns).

Based upon the synchronous protocol there are three user callable functions: send(), receive(), and

send and receive() (send to one PE and receive from another PE, possibly the same).

4.2 T3D Asynchronous Protocol

E�cient asynchronous message passing exposes a number of implementation challenges on the T3D. Unlike

the synchronous case, the asynchronous algorithm must address bu�er management, race conditions,

and synchronization issues. Additionally, at least one extra data copy will be necessary between the

application memory and a bu�er within the message passing library, which is avoided in the synchronous

case. Since word aligned memcpy() speeds on the T3D are only 170MB/sec (approximately), it is important

to minimize the number of data copies in order to achieve high bandwidth.

Our approach to the bu�er management problem follows that used in the Illinois Fast Messaging library [7].

As in FM, we use the fetch-and-increment registers on the T3D to allocate remote bu�ers from a �xed

sized pool of bu�ers as shown in Figure 2. A sending PE reads the fetch-and-increment register on the

receiving PE. The read operation returns the current value of the fetch-and-increment register, while

atomically incrementing it as well. If the fetch-and-increment register is out of the bounds for the bu�er

pool, the sender must block until the receiver removes messages from the bu�er pool and resets the fetch-

and-increment register. If it is in bounds, the value read gives an index into the receiver's bu�er pool,

providing a bu�er which the sender has exclusive access to. The sender transfers the message data to this

bu�er, via shmem put(), and transfers a 
ag value DONE, indicating the transfer is complete.

The receiving PE �rst checks a linked list of sent-but-not-yet-received messages for a message that matches

the receive request. If a matching message is found, the data is memcpy'd to the caller's bu�er and the

linked list node is freed. If a matching message is not found in the linked list, the bu�er pool itself is

5



scanned for a matching message. If a matching message is found, the data is memcpy'd to the caller's

bu�er and the bu�er pool slot is marked as RECEIVED. In most cases, the linked list is empty and a

matching message is found directly from the bu�er pool, resulting in a one data copy, in addition to the

shmem put().

Figure 2: Asynchronous Protocol

Each PE periodically checks whether its fetch-and-increment register has over
owed. This check is made

each time a send or receive request is processed. The check can be accomplished by examining the last

bu�er in the bu�er pool to see if it is marked as DONE or RECEIVED. If the fetch-and-increment register

is out of bounds, all messages in the bu�er pool are copied out into a linked list of sent-but-not-yet-received

messages, and the fetch and increment register is reset to zero. This allows blocked senders to resume.

The user callable functions for the asynchronous protocol are asynchronous send, asynchronous receive,

and blocking asynchronous receive. The two receives di�er in that the �rst returns immediately if a

message is not available. The other will block until a message has been received.

4.3 Global Operations

The global operations consist of a broadcast and a reduce primitive. The reduce primitive is extensible in

that the user can write a reduction operator.

Broadcast and reduce global operations are implemented in ACLMPL using e�cient tree based algo-

rithms [2]. For simplicity, both broadcast and reduce use PE 0 as the root processor, though the algorithms

can be generalized to handle any root PE.

A broadcast from PE 0 is sent in log(P ) phases, where P is the partition size. In the �rst phase, only PE

0 is active and the broadcast is sent from PE 0 to PE P

2
. In the second phase, PE 0 and PE P

2
are active

and each sends to PE self + P

4
. In the ith phase, PEs which have received the data forward the data

onto the PE whose number di�ers only in the (log(P ) � i)th bit. This is a well known algorithm whose

complexity is O(NlogP ), where N is the size of the broadcast and P is the partition size3.

3Technically, this time bound and those that follow assume a hypercube interconnection network, though empirical
evidence indicates that they match well to measured performance on the T3D's 3D torus network as well.

6



The reduction operation can use the same tree structure used in the broadcast but in reverse, again yielding

a O(NlogP ) time bound. Initially all PEs are active. In the ith phase of the algorithm, the PEs which

have a 1 in the ith bit of their PE number send to the PE whose PE number is identical except for a 0 in

the ith bit. The sending node becomes inactive, while the receiving node combines the received data with

its own and proceeds to the next phase. At the end of the reduction, PE 0 holds the entire reduced array.

Note that in each phase of the reduction, as we move up to the root of the tree, fewer PEs are participating

in the operation. This suggests that a more e�cient algorithm could be devised which utilizes all the PEs

during every phase. We �rst made this observation in a special case of the reduction algorithm: image

compositing in a sort last volume renderer [8]. In our binary-swap reduction algorithm we split the array

being reduced in half at each phase of the algorithm and keep all PEs active throughout all phases.

In the ith phase of the algorithm, two PEs whose PE numbers di�er only in the ith bit split their reduction

array into two sub-arrays of equal size. One PE takes the lower sub-array while the other takes the upper

sub-array. The two PEs exchange data, combine the received data with their own, and both proceed to

the next phase. At the end of the �nal phase, the entire array has been reduced, but it is distributed

across all the PEs. A �nal gather stage brings the result together in PE 0. The binary swap reduction

algorithm runs in O(N) time when the array size N is much larger than the partition size P . On the T3D

we have found that N � 1024 is su�cient for binary swap reduction to outperform the simple tree based

algorithm.

As previously mentioned, the global operations are built upon the synchronous primitives. Since all PEs

must participate in a global operation, asynchrony is not needed. Furthermore, the synchronous primitives

are faster since they do not do any bu�ering of data.

4.4 ACLMPL for the CM-5

Since ACLMPL closely mimics CMMD, the CM-5 version consists mainly of source to source transfor-

mations. This results in no overhead for using ACLMPL on the CM-5. The only ACLMPL functions

implemented on the CM-5 are the reduce and broadcast primitives. This allows the user to write his or

her own reduction operations, which is not supported by CMMD. Additionally, we have found our version

of broadcast to be faster than the CMMD version for larger message sizes (approximately 2K bytes).

4.5 ACLMPL for the SGI

The Silicon Graphics version of ACLMPL is based upon IRIX speci�c interprocess communication (IPC)

functions4. These functions allow for the creation and management of a shared pool of memory which is

used to facilitate the communication of messages between processors. In addition, these routines support

barriers, semaphores, and locks.

4The IRIX routines have better performance than the standard AT&T System V Release V IPC routines. See the SGI
Insight manual, Topics in IRIX Programming for more details.

7



4.5.1 Synchronous Protocol

Once the shared pool of memory, known as a shared arena, is created, a portion of it is set aside for

internal data structures. These data structures allow processors to share both synchronization and message

information. This closely resembles the synchronous implementation on the T3D.

The �rst step in sending a message is to allocate a region in shared memory large enough to hold the

incoming message. Next, the sender copies the message into this region and waits for the receiver to

arrive. Once the receiver has arrived, the sender provides the size and location of the allocated block in

shared memory.

The receiver's �rst step is to alert the sending processor that it is ready and waiting for the message.

It then waits for the size and memory location of the message from the sender. Once the sender has

provided this information, the message is copied out of the shared arena and into the receiver's address

space. The receiver's �nal task is to free the shared memory bu�er and inform the sender the message has

been received.

A clear disadvantage of this approach is the memory copies to and from the shared arena. However, this

may be overcome by using the direct memory mapping routines supplied by the IRIX operating system.

4.5.2 Asynchronous Protocol

The asynchronous message passing routines create a second shared arena { this allows for a clean separation

from the synchronous implementation. However, if memory is scarce, both protocols may share the same

arena. The approach used by the SGI asynchronous protocol also closely matches the T3D implementation

described above.

During initialization, a data structure is created in the shared arena where both incoming messages and

their status will be stored. This region of memory is of a �xed size and the sending processors are

responsible for copying messages into a free location if one exists. Since the incoming message bu�er is of

a �xed size, the sending processors are blocked until a free slot becomes available.

The current implementation lacks several optimizations, such as using direct memory mapping, which can

increase performance. Future development will address this optimization and others.

In addition, ACLMPL has been implemented on top of PVM's psend() and precv() functions. This

not only provides us with a more portable version of the library, but can also help in the early stages of

application development and debugging without the use of an MPP.

8



5 Timings

Numerous benchmarks were performed on ACLMPL, MPI5, PVM, and SHMEM using the T3D. For each

of these packages we attempted to write the most e�cient programs possible. For example, in PVM we

used psend() and precv() instead of using the other routines which pack and unpack the data. Six

di�erent test cases were run on various partition sizes and for various message sizes. The six cases are: one

PE communicating with all others (one-to-all), all PEs communicating with all others (all-to-all), all PEs

communicating with one PE (all-to-one), global reduction, global broadcast, and latency. Performance

�gures are included for SHMEM, in addition to the message passing systems, to give a reference for how

they compare to using shared memory for communications.

The six cases were chosen for the following reasons. One-to-all is typical of initial data distribution, such

as when one PE is responsible for reading a �le and distributing parts of it to di�erent PEs. Similarly,

all-to-one is representative of gathering results back from all PEs for performing serial I/O. All-to-all is

indicative of worse case, general communications. Global reduction and broadcast are included since they

are very common global operations. The latency benchmark measures the overhead involved in sending

very short messages (1 word) and measures the minimum overhead in sending short messages. Because

many of the graphs exhibit similar curves, we have chosen a representative few for this paper6.

Figure 3 and Figure 4 show the performance curves for the all-to-all case on 2 and 128 PEs. The Y axis

shows throughput and the X axis shows message size in bytes. Several interesting features can be seen.

0.01

0.1

1

10

100

1 10 100 1000 10000 100000 1e+06 1e+07

M
B

/s
ec

Message Size (in bytes)

Sync. ACLMPL
Async. ACLMPL

Async. MPI
Sync. MPI

PVM
SHMEM

Figure 3: All-to-all communications on 2 processors.

Throughput for all of the message passing systems increases greatly until the message size becomes su�-

ciently large (greater than 1K bytes) and then tapers o�. Synchronous ACLMPL is as fast as all of the

other message passing systems for all cases. Additionally, for partitions greater than 2 PEs and for message

5The T3D MPI implementation was from EPCC. The MPICH implementation could not properly execute the test
programs.

6All performance results are available via URL, http://www.acl.lanl.gov/Viz/aclmpl timings.ps

9



0.01

0.1

1

10

100

1 10 100 1000 10000 100000 1e+06 1e+07

M
B

/s
ec

Message Size (in bytes)

Sync. ACLMPL
Async. ACLMPL

Async. MPI
Sync. MPI

PVM
SHMEM

Figure 4: All-to-all communications on 128 processors.

sizes greater than 1K bytes, it is faster than either shared memory or the other message passing systems.

This seems curious at �rst since ACLMPL is built on top of SHMEM. The explanation is that the SHMEM

version 
oods the T3D network and causes collisions, thus reducing performance. Synchronous ACLMPL

requires serialization (a PE can only receive from one sender at a time) which helps avoid saturating the

network switches, thus resulting in greater performance.

As the partition size increases, maximum throughput for the all-to-all case decreases from 67 MB/s to 23

MB/s. The kink in the PVM curve is due to a di�erent, internal algorithm used by PVM for handling

large messages7. Finally, asynchronous ACLMPL functions are also faster than the other message passing

systems for partitions containing 32 or more PEs. For partitions smaller than 32 PEs, ACLMPL is faster

for message sizes less than 8K bytes.

Figure 5 shows performance curves for all PEs sending to one PE on a 128 PE partition. The synchronous

version of ACLMPL is faster than the other message passing systems, as is the asynchronous version for

messages less than 8K bytes. SHMEM is faster than ACLMPL in all cases since there is not the abundance

of collisions on the network as there is with the all-to-all case. Maximum throughput is greater than 110

MB/s for synchronous ACLMPL.

Curiously, the spike in the PVM curve in the one-to-all case changes direction from all other test cases.

Unfortunately, we have not been able to explain the direction change in the spike without access to the

PVM source code for the T3D.

The one-to-all case, Figure 5, exhibits similar performance curves with the exception that PVM seems to

do better than it did in the all-to-one case.

Figure 7 and Figure 8 show broadcast times for 2 and 128 PEs Both graphs exhibit similar curves with the

exception of the PVM curve. As the number of PEs increases, the upward spike in the PVM curve grows.

It should also be noted, that as the number of PEs increases, the time for all message passing systems

7See the Cray T3D PVM documentation on the PVM DATA MAX environment variable

10



0.1

1

10

100

1000

1 10 100 1000 10000 100000 1e+06 1e+07

M
B

/s
ec

Message Size (in bytes)

Sync. ACLMPL
Async. ACLMPL

Async. MPI
Sync. MPI

PVM
SHMEM

Figure 5: All-to-one communications on 128 processors.

0.1

1

10

100

1000

1 10 100 1000 10000 100000 1e+06 1e+07

M
B

/s
ec

Message Size (in bytes)

Sync. ACLMPL
Async. ACLMPL

Async. MPI
Sync. MPI

PVM
SHMEM

Figure 6: One-to-all communications on 128 processors.

increases regardless of message size.

Figure 9 shows times to perform a global reduce using 128 PEs. MPI is signi�cantly slower than ACLMPL;

and PVM performs well for small messages but then degrades for larger messages.

Table 1 shows the latency times for sending a one word message. Both the MPI synchronous and asyn-

chronous versions incur signi�cant overhead in sending a short message (greater than 8 times that of

ACLMPL synchronous messages). It should be noted that the T3D is extremely instruction cache sensi-

tive and that cache coherency and alignment will greatly a�ect these timings.

Table 2 presents performance numbers for 1024 byte messages on a 32 PE partition which seems to be a

commonly used size. The numbers for all-to-all, all-to-one, and one-to-all are in megabytes per second; and

the numbers for broadcast and reduce are in seconds. For the �rst three cases, the synchronous functions

in ACLMPL are approximately between 4 and 7 times faster than the other message passing systems, and

11



1e-06

1e-05

0.0001

0.001

0.01

0.1

1 10 100 1000 10000 100000 1e+06 1e+07

S
ec

on
ds

Size (in bytes)

ACLMPL
MPI

PVM
SHMEM

Figure 7: Broadcast on 2 processors.

1e-05

0.0001

0.001

0.01

0.1

1

10

1 10 100 1000 10000 100000 1e+06 1e+07

S
ec

on
ds

Size (in bytes)

ACLMPL
MPI

PVM
SHMEM

Figure 8: Broadcast on 128 processors.

broadcast and reduce are roughly 10 to 80 percent faster.

6 Results

While ACLMPL recently grew out of the e�orts of the visualization group at the Advanced Computing

Lab, it is a general purpose communications library. One example of its use is in a molecular dynamics

application for massively parallel computers. The application is used to simulate molecules containing

several hundreds of millions of atoms. In 1993 it won a Gordon Bell prize for performance (it was able to

sustain >53 G
ops on a 1024 node CM-5). It should be noted that at that time the application was based

on CMMD. It is currently being ported to ACLMPL.

ACLMPL has been used in two newly developed visualization applications. One is a sphere renderer that

12



1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000 100000 1e+06 1e+07

S
ec

on
ds

Size (in bytes)

ACLMPL
MPI

PVM
SHMEM

Figure 9: Reduce on 128 processors.

Protocol Time (� seconds)

ACLMPL (sync) 5

ACLMPL (async) 15

PVM 25

MPI (sync) 47

MPI (async) 40

Table 1: Latency

is used by the molecular dynamics project for displaying their data. The renderer can be used as either a

stand-alone program or as a MIMD callable library. As a stand-alone program, the renderer can be used

either interactively with an X11 graphical user interface (GUI) or in a batch mode. Images are either

displayed in an X11 window, on a HIPPI frame bu�er, or written to disk. Rendering rates on the T3D are

approximately 660K spheres per second. For comparison, a SGI Onyx graphics workstation can sustain

roughly 19K spheres per second.

The second visualization application is a renderer for volumetric data based upon Binary-Swap Composit-

ing [6]. The renderer distributes a 3D data set to the PEs. Each PE is responsible for rendering its own

subvolume. After each PE is done, the subimages are composited together using binary-swap. The user

can interact with the renderer either through an X11 interface or through AVS. The renderer can generate

approximately 4 frames per second using 128 PEs to render a 1283 data set into a 256 x 256 image that

is displayed on a HIPPI frame bu�er.

13



ACLMPL (sync) ACLMPL (async) MPI (sync) MPI (async) PVM

alltoall 19:00 7:93 4:71 4:58 4:43

alltoone 61:90 36:43 10:70 10:72 8:94

onetoall 74:00 60:61 10:70 9:96 57:02

bcast 0:000076 { 0:000135 { 0:000138

reduce 0:000162 { 0:000452 { 0:000180

Table 2: Performance for 1KB messages on 32 PE's.

7 Conclusions

ACLMPL was developed with two goals in mind: to provide high throughput, low latency communications

for message passing applications, and to provide portability. As previously shown, ACLMPL is approx-

imately 4 to 7 times faster than either MPI or PVM on the Cray T3D for general communications and

10 to 80 percent faster for global communications. This is signi�cant to MPP applications since slow

communications will reduce performance and scalability.

Since ACLMPL is based very closely on TMC's CMMD, we can preserve our software investment. Addi-

tionally, we have found ACLMPL to be quite portable to other platforms while still retaining e�ciency.

While we don't expect, nor want, ACLMPL to become the \new message passing standard", we would

hope that it can be seen as a challenge to those who implement message passing systems. ACLMPL should

be viewed as proof that it is possible to develop a portable, usable, high performance message passing

system for MPPs.

Finally, four major points should be noted. First, synchronous message passing is inherently simpler than

asynchronous message passing. This is because bu�er management and additional data movement can be

avoided. These optimizations should be used. Second, e�cient global communications algorithms exist

and should be used; otherwise, scalability to large partition sizes is impaired. Third, on the T3D e�cient

bu�er management can be performed using the fetch-and-increment facilities. Last, while portability is a

highly desirable trait, perhaps performance should be equally important when supplying message passing

systems for use within a MPP. MPI tends more towards this balance than does PVM, although additional

performance gains should still be possible as we have demonstrated.

References

[1] Ray Arriuso and Allan Knies. SHMEM User's Guide. Cray Technical Report, May 1995.

[2] M. Barnet, P. Little�eld, D.G. Payne, and R. van de Geijn. On the E�ciency of Global Combine

Algorithms for 2-D Meshes With Wormhole Routing. Journal of Parallel and Distributed Computing,

14



24, 1995.

[3] Thinking Machines Corporation. CMMD User's Guide. TMC Reference Manuals, 1993.

[4] Al Geist et. al. PVM 3 User's Guide and ReferenceManual. Oak Ridge National Laboratory, September

1994.

[5] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. International Journal

of Supercomputer Applicationsi, 8(3 & 4), 1994.

[6] Charles D. Hansen, Michael F. Krogh, James S. Painter, Guillaume Colin de Verdi�ere, and Roy Trout-

man. Binary swap volumetric rendering on the t3d. Cray Users Group Conference, Denver, CO, March

1995.

[7] Viay Karamcheti and Andrew A. Chien. A Comparison of Architectural Support for Messaging on the

TMC CM-5 and the Cray T3D. To appear in the Procceedings of ISCA '95, Santa Margherita, Italy,

June 1995.

[8] Kwan-Lui Ma, James S. Painter, Charles D. Hansen, and Michael F. Krogh. Parallel volume rendering

using binary swap compositing. IEEE Computer Graphics and Applications, 14(4), July 1994.

15


	Abstract
	1 Introduction
	2 Previous Work
	3 The Need for Performance
	4 Implementation
	4.1 T3D Synchronous Communications
	4.2 T3D Asynchronous Protocol
	4.3 Global Operations
	4.4 ACLMPL for the CM-5
	4.5 ACLMPL for the SGI
	4.5.1 Synchronous Protocol
	4.5.2 Asynchronous Protocol


	5 Timings
	6 Results
	7 Conclusions
	References

